Supplement to Relevance Logic
The Logic E
Here is a Hilbert-style axiomatisation of the logic \(\mathbf{E}\) of relevant entailment.
Our language contains propositional variables, parentheses, negation, conjunction, and implication. In addition, we use the following defined connectives:
\[\begin{align} A\vee B &=_{df} \neg(\neg A \amp \neg B) \\ A \leftrightarrow B &=_{df} (A \rightarrow B) \amp(B \rightarrow A) \end{align}\]| Axiom Scheme | Axiom Name | |
| 1. | \(A \rightarrow A\) | Identity | 
| 2. | \(((A \rightarrow A) \rightarrow B) \rightarrow B\) | EntT | 
| 3. | \((A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C))\) | Suffixing | 
| 4. | \((A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)\) | Contraction | 
| 5. | \((A \amp B) \rightarrow A,(A \amp B) \rightarrow B\) | & -Elimination | 
| 6. | \(A \rightarrow(A\vee B), B \rightarrow(A\vee B)\) | \(\vee\)-Introduction | 
| 7. | \(((A \rightarrow B) \amp(A \rightarrow C)) \rightarrow(A \rightarrow(B \amp C))\) | & -Introduction | 
| 8. | \(((A\vee B) \rightarrow C)\leftrightarrow((A \rightarrow C) \amp(B \rightarrow C))\) | \(\vee\)-Elimination | 
| 9. | \((A \amp(B\vee C)) \rightarrow((A \amp B)\vee(A \amp C))\) | Distribution | 
| 10. | \((A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A)\) | Contraposition | 
| 11. | \(\neg \neg A \rightarrow A\) | Double Negation | 
| Rule | Name | |
| 1. | \(A \rightarrow B, A\vdash B\) | Modus Ponens | 
| 2. | \(A, B\vdash A \amp B\) | Adjunction | 
